Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 121: 205-213, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236861

RESUMO

Synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal α-synuclein in intraneuronal inclusions, named Lewy bodies. Mutations in GBA1, the gene encoding the lysosomal hydrolase glucocerebrosidase, have been identified as the most common genetic risk factor for PD and DLB. However, despite extensive research, the mechanism by which glucocerebrosidase dysfunction increases the risk for PD or DLB still remains elusive. In our study we expand the toolbox for PD-DLB post-mortem studies by introducing new quantitative biochemical assays for glucocerebrosidase and α-synuclein. Applying causal modelling, we determine how these parameters are interrelated and ultimately impact disease manifestation. We developed quantitative immuno-based assays for glucocerebrosidase and α-synuclein (total and phosphorylated at Serine 129) protein levels, as well as a liquid chromatography-mass spectrometry method for the detection of the glucocerebrosidase lipid substrate glucosylsphingosine. These assays were applied on tissue samples from frontal cortex, putamen and substantia nigra of PD (n = 15) and DLB (n = 15) patients and age-matched non-demented controls (n = 15). Our results confirm elevated p-129 over total α-synuclein levels in the insoluble fraction of PD and DLB post-mortem brain tissue and we found significantly increased α-synuclein levels in the soluble fractions in PD and DLB. Furthermore, we identified an inverse correlation between reduced glucocerebrosidase enzyme activity and protein levels with increased glucosylsphingosine levels. In the substantia nigra, a brain region particularly vulnerable in Parkinson's disease, we found a significant correlation between glucocerebrosidase protein reduction and increased p129/total α-synuclein ratios. We assessed the direction and strength of the interrelation between all measured parameters by confirmatory path analysis. Interestingly, we found that glucocerebrosidase dysfunction impacts the PD-DLB status by increasing α-synuclein ratios in the substantia nigra, which was partly mediated by increasing glucosylsphingosine levels. In conclusion, we show that the introduced immuno-based assays enable the quantitative assessment of glucocerebrosidase and α-synuclein parameters in post-mortem brain. In the substantia nigra, reduced glucocerebrosidase levels contribute to the increase in α-synuclein levels and to PD-DLB disease manifestation partly by increasing its glycolipid substrate glucosylsphingosine. This interrelation between glucocerebrosidase, glucosylsphingosine and α-synuclein parameters supports the hypothesis that glucocerebrosidase acts as a modulator of PD-DLB.


Assuntos
Encéfalo/metabolismo , Glucosilceramidase/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida/métodos , Interpretação Estatística de Dados , Feminino , Glucosilceramidase/análise , Humanos , Imunoensaio/métodos , Masculino , Espectrometria de Massas/métodos , alfa-Sinucleína/análise
2.
Stem Cell Res ; 23: 122-126, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28925361

RESUMO

We describe the generation of a biallelic GBA deletion human embryonic stem cell line using zinc finger nuclease-mediated gene targeting. The homozygous targeting of exon 4 of the GBA locus leads to a complete loss of glucocerebrosidase (GCase) protein expression.


Assuntos
Técnicas de Cultura de Células/métodos , Deleção de Genes , Glucosilceramidase/genética , Células-Tronco Embrionárias Humanas/enzimologia , Sequência de Bases , Linhagem Celular , Homozigoto , Humanos , Mutação com Perda de Função/genética
3.
Sci Rep ; 7(1): 6036, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729666

RESUMO

Human induced pluripotent stem cells (hiPSCs) are invaluable to study developmental processes and disease mechanisms particularly in the brain. hiPSCs can be differentiated into mature and functional dopaminergic (DA) neurons. Having robust protocols for the generation of differentiated DA neurons from pluripotent cells is a prerequisite for the use of hiPSCs to study disease mechanisms, for drug discovery, and eventually for cell replacement therapy. Here, we describe a protocol for generating and expanding large numbers of homogeneous midbrain floor plate progenitors (mFPPs) that retain efficient DA neurogenic potential over multiple passages and can be cryobanked. We demonstrate that expanded mFPPs have increased DA neuron potential and differentiate more efficiently and rapidly than progenitors generated by standard protocols. In addition, this novel method results in increased numbers of DA neurons that in vitro show characteristic electrophysiological properties of nigrostriatal DA neurons, produce high levels of dopamine, and integrate into host mice when grafted in vivo. Thus, we describe a robust method for producing human mesencephalic DA neurons from hiPSCs.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mesencéfalo/citologia , Células-Tronco Neurais/citologia , Animais , Biomarcadores , Contagem de Células , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Imunofluorescência , Humanos , Imunofenotipagem , Camundongos
4.
PLoS One ; 9(5): e97332, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24845618

RESUMO

Phosphoinositide-3-kinase enhancer (PIKE) proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH) domain, a GTPase-activating (GAP) domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK) and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to third instar larval transition.


Assuntos
Ecdisona/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila melanogaster , Ecdisona/genética , Proteínas Ativadoras de GTPase/genética , Deleção de Genes , Insulina/genética , Insulina/metabolismo , Larva , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...